35整体硬质合金硬质合金刀具磨削裂纹分析刀具在航空航天业、模具制造业、汽车制造业、机床制造业等领域得到越来越广泛的应用,尤其是在高速切削领域占有越来越重要的地位。在高速切削领域,由于对刀具安全性、可靠性、耐用度的高标准要求,整体硬质合金刀具内在和表面的质量要求也更加严格。而随着硬质合金棒材尤其是超细硬质合金材质内在质量的不断提高,整硬质合金刀具磨削裂纹分析体硬质合金刀具表面的质量情况越来越受到重视。众所周知,硬质合金刀具的使用寿命除了与其耐磨性有关外,也常常表现在崩刃、断刃、断裂等非正常失效方面,磨削后刀具的磨削裂纹等表面缺陷则是造成这种非正常失效的重要原因之一。这些表面缺陷包括经磨削加工后暴露于表面的硬质合金棒料内部粉末冶金制造缺陷(如分层、裂纹、未压好、孔洞等)以及磨削过程中由于不合理磨削在磨削表面造成的磨削裂纹缺陷,而磨削裂纹则更为常见。这些磨削裂纹,采用肉眼、放大镜、浸油吹砂、体视显微镜和工具显微镜等常规检测手段往往容易造成漏检,漏检的刀具在使用时尤其是在高速切削场合可能会造成严重的后果,因此整体硬质合金刀具产品磨削裂纹缺陷的危害很大。因此对整体硬质合金刀具磨削裂纹的产生原因进行分析和探讨,并提出有效防止磨削裂纹的工艺改进措施具有很重要的现实意义。2整体硬质合金刀具磨削裂纹的原因分析整体硬质合金刀具的磨削加工特点硬质合金材料由于硬度高,脆性大,导热系数小,给刀具的刃磨带来了很大困难,尤其是磨削余量很大的整体硬质合金刀具。硬度高就要求有较大的磨削压力,导热系数低又不允许产生过大的磨削热量,脆性大导致产生磨削裂纹的倾向大。因此,对硬质合金刀具刃磨,既要求砂轮有较好的自砺性,又要有合理的刃磨工艺,还要有良好的冷却,使之有较好的散热条件,减少磨削裂纹的产生。一般在刃磨硬质合金刀具时,温度高于600℃,刀具表面层就会产生氧化变色,造成程度不同的磨削烧伤,严重时就容易使硬质合金刀具产生裂纹。这些裂纹一般非常细小,裂纹附近的磨削表面常有蓝、紫、褐、黄等颜色相间的不同氧指数的钨氧化物的颜色,沿裂纹敲硬质合金刀具磨削裂纹分析断后,裂纹断口的断裂源处也常有严重烧伤的痕迹,整个裂纹断面常因渗入磨削油而与新鲜断面界限分明。传统碳化硅砂轮磨削硬质合金由于磨削效率很低、磨削力较大、自砺性差以及磨削接触区表面局部温度高(高达1100℃左右)等造成刀具刃口质量差、表面粗糙度差和废品率高等缺点已逐渐被淘汰使用;而金刚石砂轮则由于磨削效率高、磨削力较小、自砺性好、金刚石刃口锋利、不易钝化以及磨削接触区表面局部温度较低(一般在400℃左右)等优点被广泛应用于硬质合金刀具的磨削加工中。但在整体硬质合金刀具的金刚石砂轮磨削过程中,由于磨削余量很大,加工方法、金刚石工具特性和磨削制度如果选择不当,也会造成刀具磨削接触区表面局部瞬时温度偏高,从而产生磨削裂纹。在多数情况下硬质合金制品烧结后在表面层产生残余拉应力(起源于热),这种拉应力值可达5硬质合金刀具磨削裂纹分析00~1000mpa。该应力层的深度不大于5~7µm,应力渗入深度不超过30~40µm。越接近表面,其值越高;钴含量越高,其值越高。因此烧结后的硬质合金抗弯强度值(trs值)和疲劳寿命值很低。但磨削余量常大于0.1mm,因而随后的磨削加工在去除硬质合金表层后完全可以消除烧结合金中的残余拉应力,并形成新的应力状态。由此可见,烧结硬质合金刀具磨削裂纹分析工艺引起的残余应力对在磨削过程中残余应力的形成没有影响。在磨削加工过程中,影响刀具表面状态的有两个主要因素:施加的力和局部温度。施加的力对合金表面的作用会引起不可硬质合金刀具磨削裂纹分析恢复的塑性变形、结构的变化和相变并伴随着单位体积的增大,从而导致形成残余压应力,提高抗弯强度、疲劳强度、冲击韧性、硬度、耐磨性和使用寿命等,亦即发生强化过程;局部温度对合金表面的作用会在表面层中产生不均匀的热塑性变形、结构和相的变化并伴随着单位体积的减小,从而导致形成残余拉应力、降低抗弯强度、疲劳强度、冲击韧性、硬度、耐磨性和使用寿命等,亦即发生弱化过程。因此,硬质合金刀具*终表面层状态是被强化还是被弱化,是残余压应力为主,还是残余拉应力为主,则取决于在磨削过程中对其表面的作用是以力为主还是以温度为主。当磨削过程中磨削接触区的局部瞬时温度达到一定程度(有时可达1000℃以上)占主导因素时,便会形成表面层较浅的压应力分布和近表面层过高的拉应力值,残余拉应力促进裂纹的萌生和扩展,其数值之大,甚至会超过材料的破断强度,而形成细微小裂纹。有时在磨削后不产生裂纹,但在研磨或使用过程中,当其表层被去除后,下层的残余应力失去平衡,才出现裂纹。在金刚石加工时,刀具表面磨削接触区局部瞬时温度的高低将取决于加工方法、金刚石工具特性和磨削制度。